Data Arteries – Enabling Business Strategy Through Information Technology

Regardless of size and industry, every enterprise is dependent upon information technology, and must have a strategy for how to employ it, especially as the internet becomes more pervasive. Information technology strategy is an enabler of business strategy. Not only must an enterprise manage relationships with its constituencies, but it must be able to connect with them electronically through data arteries – information supply, value, and demand chains. The information supply and demand chains are external; the information value chains are internal.

An information technology strategy is a special case functional strategy because every function in the enterprise requires electronic information delivery capabilities, and many require electronic process control also. In very large enterprises, strategy may be formulated at both the enterprise and organizational unit levels.

As websites such as Facebook, LinkedIn, MySpace, Plaxo, and Twitter become more pervasive in business, linkages between application systems and databases and social networking websites will be more important to enable constituencies to communicate both collaboratively and cooperatively. Just as email has become a primary method of communication between enterprises and their constituencies, so will social networking sites especially for advertising and ecommerce.

Business intelligence information can be used to identify opportunities for competitive advantage. However, information technology itself can be an enabler of competitive advantage, especially when there are opportunities to digitize products or deliver information products electronically. In such cases, business strategy is inseparable from information technology strategy.

Information technology comprises the analytical and operational application systems, databases, and technical infrastructure (hardware and networks) of an enterprise. Not all computer technologies are information based. Computer technology is used for process control applications in special purpose equipment. However, connectivity is essential as applications become more integrated. As digital construction and manufacturing practices develop through such technologies as computer-aided design/computer-aided manufacturing (CAD/CAM), the processes, the control of processes, and the products and/or services delivered by processes all rely upon information technology for connectivity.

For example, in the manufacturing industry, not only can design and manufacturing work be conducted through integrated CAD/CAM processes with electronic linkages to carriers, such as FedEx and UPS, but the entire project and process management activities can be monitored electronically from ideation to product delivery.

Through technologies such as electronic data interchange and electronic funds transfer, data and both digital and information products flow through information supply and demand chains in parallel to material supply and product and/or service demand chains. Within the enterprise, data flows through information value chains from supply chains and to demand chains.

Developing an information technology strategy document is essential for describing the requirements and for educating users because:

  • The impact is enterprise or organizational unit wide and other elements of strategy cannot be implemented without it
  • Administrative activities, such as legal, finance, and human resources, and operational activities, such as research and development, procurement, manufacturing or equivalent, distribution, marketing, sales, and service depend on information technology – analytical and operational systems support both administrative and operational functions
  • The time frames, expenditures, risks, and magnitude of efforts are usually larger and more complicated than other initiatives and must be clearly understood; information technology projects have a tendency to go out of control and under deliver – therefore, contingency plans are always necessary
  • The subject matter can be complicated if not well explained

Information technology strategy is usually packaged as a separate but related document to the strategic plan. It is deployed and executed through specific programs and projects that develop new or enhance or maintain existing application systems, databases, and technical infrastructure.

Large information technology development projects are usually cross-functional, and may be part of a broader initiative sponsored by multiple functions collectively. Broader initiatives that have information technology components include:

  • Market research and development
  • Product research and development
  • Infrastructure research and development for processes and information delivery

For example – for the development of a:

  • Digital manufacturing system integrating both research and development and sales and production activities (sponsors: Manufacturing and Sales functions – impact is on Research and Development, Procurement, Manufacturing, Distribution, Sales, and Service functions)
  • Financial, managerial, and regulatory accounting and reporting system (sponsor: Finance function – impact is enterprise wide)
  • Human resource management system (sponsor: Human Resources function – impact is enterprise wide)
  • Sales tracking system (sponsor: Sales function – impact is on all salespeople enterprise wide)

Some projects can be solely for the Information Technology function, in which case it is a customer of itself.

Steering committees should be established for major programs and projects representing the various impacted functions in order to resolve cross-functional barriers. Major programs should come under the review of a planning and policy committee at the enterprise level.

Information technology strategy formulation is a project in its own right at the enterprise or organizational unit level. Very large projects are grouped as a program of inter-related components under a program manager. Projects can be stand alone also. A single project can deliver one or more application systems and related databases and technical infrastructure, or multiple projects may be required depending upon complexity.

For example, when launching a new product, it may be necessary to conduct marketing, product, and infrastructure development projects that include the delivery of new systems, and upgrades to existing systems. However, if an addition to the product line is launched at a later time, a new project or set of projects may be required to enhance or maintain the current systems, or even develop new ones.

The work breakdown structure for downstream development, enhancement, and maintenance projects decomposes into planning, analysis, design, construction, implementation, and performance measurement phases. The performance measurement phase can be conducted in parallel with the other phases, and each must end with a performance review. A feedback loop to future planning activities must be established so that lessons learned from the past can be reflected in future initiatives.

Meeting the cost and schedule requirements is always a major consideration. Hence, “meeting the date” is a frequent requirement for project success. However, after implementation, the scope of what was delivered and its quality is usually remembered more than when. In anticipation of the need to make changes after implementation, an adaption project may be necessary to tune, standardize, and integrate the deliverables.

The planning phase is conducted at the enterprise, organizational unit, or program levels for one or more projects depending upon size and complexity. However, each application system and related databases and technical infrastructure is delivered through a project with distinct analysis, design, construction, and implementation phases. Each phase always begins with a detailed planning activity to ensure that resources are allocated appropriately. The work breakdown structure does not preclude the use of iterative methodologies within each phase for rapid application development and prototyping. Development, enhancement, and maintenance of websites can be very rapid, and heavily interactive with user involvement, when the appropriate tools are used.

Key questions and deliverables by information technology strategy project and downstream phases include:

Strategy project (enterprise and organizational unit levels):

Key questions:

  • How does information technology enable business strategy?
  • What are the investment priorities?

Deliverables include:

  • Information technology architecture (applications, data and databases, and technical infrastructure)
  • High level project phasing and plans

Planning phase (enterprise, organizational unit, and program levels):

Key questions:

  • What are the administrative functions’ systems and information needs?
  • What are the operational functions’ systems and information needs?
  • What are the priorities for the candidate analytical systems?
  • What are the priorities for the candidate operational systems?

Deliverables include:

  • Process models
  • Function models
  • Data models
  • Information models
  • Economic evaluation
  • Scope of analysis projects and schedules

Analysis phase (project level):

Key questions:

  • How do processes, functions, and systems fit together?
  • How do systems processes and functions relate to enterprise processes and functions?
  • How do systems processes and functions and enterprise processes and functions fit together?

Deliverables include:

  • Functional requirements
  • Economic evaluation
  • Scope of design projects and schedules

Design phase (project level):

Key questions (by system):

  • What are the system’s functional requirements?
  • What are the system’s technical requirements?
  • What is the total cost of ownership and benefits (tangible and intangible)?

Deliverables include (by system):

  • Application system specifications
  • Data and database specifications
  • Technical infrastructure specifications
  • Scope of construction project and schedule
  • Total cost of ownership/benefit analysis

Construction phase (project level):

Key questions (by system):

  • Is the system being constructed according to design?
  • If not, what change orders are required, and why?

Deliverables include (by system):

  • Tested application system and interfaces, databases, and technical infrastructure
  • Trained users

Implementation phase (project level):

Key questions (by system):

  • What are the costs and schedule relative to plan?
  • What is the scope relative to plan?
  • What is the quality relative to plan
  • When will the benefits be realized relative to plan?
  • What adjustments for tuning, standardization, and integration are required relative to plan?
  • What are the current anticipated enhancement requests?
  • What are the current anticipated maintenance requests?
  • What are the lessons learned for the future?

Deliverables include (by system):

  • Working application system and interfaces, databases, and technical infrastructure
  • List of enhancement requests
  • List of maintenance requests
  • Performance measurement report

As enterprises become more dependent upon the internet for connectivity with constituencies, it is essential to develop, enhance, and maintain the information technology strategy on an ongoing basis. The strategy must emphasize connectivity through the data arteries as digital and information products become more pervasive.

Formulating information technology strategy is an enterpriship (entrepreneurship, leadership, and management) competency.

The Importance of Information Technology Training from a Management Perspective

Information technology training for IT managers and systems analysts may seem superfluous – these folks are usually well-learned in their areas of expertise. But, do they understand how a company’s technology fits into the bigger picture from a business perspective? That’s where management training becomes important. Every manager who plays a role in researching, selecting or implementing enterprise technology needs to have a firm grasp on the basics of emerging technologies, as well as how they serve a larger business purpose, to ensure that technology is being used to the company’s best strategic advantage.

Stay Current on Revolutionary, Emerging Technology Applications

A program of continual information technology training is crucial to the success of any IT team. Technology is constantly evolving, and it seems that there is a new application released every day that is meant to simplify doing business. This can be overwhelming if you do not stay current on the high-level trends of technology and their corresponding impact on business. With the Web 2.0 revolution in full swing, management training is a useful tool for managers to become familiar with the online trends such as blogs, wikis, podcasts and RSS feeds, as well as how the trends are going to change the ways we view the Internet and communicate with each other. It is estimated that these technologies will have significant business impact in the coming years, and companies everywhere have to consider directly how it affects their business strategies.

Information technology training can help managers determine the impact of new technologies and how to adapt their business processes. Trying to envision how Web 2.0 changes traditional business models is difficult when you have no knowledge of how these new technical applications are being used from a business perspective. First and foremost, managers must take it upon themselves to become proactive by keeping abreast of emerging trends and understanding them not only from a technical standpoint, but evaluating them from a higher-level, strategic standpoint. Management training courses on technology focus specifically on the ways that emerging technologies affect businesses on a high level. This is the type of knowledge needed to make conscious and informed decisions on what aspects of new technologies will affect your organization in the next few years and transition your thoughts into strategic action and implementation.

Collaboration and information sharing, within and outside of enterprises, are two areas that have made huge strides that management training can help your organization harness to improve business strategies. The advent of user-created content sharing has transformed the way that enterprises communicate. Enterprise-class blogs and wikis boost productivity and innovation by enabling ad hoc teams to participate in complex, collaborative problem solving, and then make the results available to the rest of the organization with ease. Information technology training gives managers the high-level information about these technologies that they need to bring them effectively into your organization.

Large companies will often struggle the most with adopting new business strategies based on emerging technologies due to organizational inertia and the lag that comes from changing any integrated system. Not only do the right people need to be convinced of the value of a new application, but the proper infrastructure often needs to be developed or tweaked to implement the technology. This is where the importance of management information technology training to understand the potential impact of technology from a business perspective comes into play.

Management Training for Appropriate Technology Selection and Recommendation

Management training courses typically deal with logistics and personnel management but fail to guide managers when it comes to making decisions about technology. As a manager in today’s world, what really matters isn’t just your ability to lead and maintain technology infrastructure – it’s your ability to deliver positive business outcomes. Cutting IT costs and managing infrastructure are only part of the equation. Technology must also reduce business risk and generate new opportunities and growth. Information technology training can help managers transition their views of technology as an isolated island off the coast of a business and look at it as one working part of the whole machine that is the organization.

Finding a cool application that has all the shiny bells and whistles you dreamed of and recommending implementation based on the technology’s sheer innovation is no longer enough to make a good business case. Before presenting a recommendation, you must understand every step involved with the successful implementation of the technology. A thorough study will need to be conducted to determine what departments, processes and functions will need to be modified in order to benefit from the new technology. Management training courses focusing on information technology gives managers the tools they need to make that determination.

If you are going to make an impact on the decision makers of a business, you have to get on their level. When it comes down to making a decision, for many business people it is all about the numbers. That is why it is essential to participate in information technology training courses that help you perform your due diligence and gather the data you need to compile hard numbers around your recommendation. What is the true return on investment that the company can expect to achieve by implementing the technology? It is much easier to convince an associate of the merits of your idea if you can show a real increase in profit based on proven research instead of attempting to sway them based on opinion only.

Conclusion

Technology is rapidly changing the way that businesses communicate and function every day. It is important for managers to take a proactive role in understanding emerging technology trends and how they may affect a company’s business model by investing in an ongoing program of information technology training for all levels of staff. Management training in particular is essential for ensuring the right technologies are pursued to ensure business success. Viewing technology as a direct influencer on the business as a whole ensures consistent alignment of goals throughout the enterprise.

Information Technology Career Preparation Training Options

When looking to obtain a higher education in information technology there are many options available. You can pursue a career that meets you individual goals by choosing from a variety of specialized areas of study. Training can be completed at different levels to allow you to receive the educational career preparation that is right for you. Enrollment in an accredited school or college will help you to obtain the higher education that is necessary for you to pursue a career in information technology. With numerous opportunities available, you can start by learning more information technology career preparation training options.

Professionals in this field are trained to carry out a number of tasks based on the career that they have chosen. You can learn to work with various computer systems for a number of reasons. Training will allow you to pursue the degree and career that meets your individual needs and goals. You can look into:

  • Associate
  • Bachelor
  • Master
  • Doctoral

…degree training programs in information technology. Studies can last anywhere from two to eight years depending on the level of education needed to enter into the career you desire. Accredited career preparation can give you the skills and knowledge to enter into a variety of careers.

There are numerous professions available in information technology. You can select the level of education that allows you to enter the career of your dreams. You can specialize in areas such as:

  • Computer Information Science
  • Information Security
  • Computer Information Systems
  • Information Systems

…and more. Accredited higher education training in these areas will cover a variety of topics to help you gain the skills you need to enter into a successful career. The area of specialty will decide the courses that must be studied.

Coursework will be different for each level of degree and the area of study that is selected. You can obtain the accredited education that will help you succeed by completing training in web development, databases, systems analysis, hardware components, and computer software. You can also complete computer security training, as well as telecommunications, user interface design, application testing, and many other subjects related to the career and specialized area you wish to enter. There are a variety of professions that can be pursued once an accredited higher education is obtained in information technology. Possible career opportunities can include working as a:

  • Software Developer
  • Support Specialist
  • Systems Analyst
  • LAN Administrator
  • Computer Programmer
  • Certified Information Systems Security Professional (CISSP)

…and other related professions. Obtain the accredited educational training you need to pursue the career of your dreams by enrolling in an information technology school or college today.

Full accredited programs offer you the best quality education available. You can ensure this by making sure the program you choose carries full accreditation from an agency like the Accrediting Commission of Career Schools and Colleges of Technology ( http://www.accsc.org/ ). Start by researching information technology schools and colleges to find the one that’s right for you and enrolling in the degree program that meets your individual needs and goals.

DISCLAIMER: Above is a GENERIC OUTLINE and may or may not depict precise methods, courses and/or focuses related to ANY ONE specific school(s) that may or may not be advertised at PETAP.org.

Copyright 2010 – All rights reserved by PETAP.org.

Advantages of Information Technology

What is Information Technology

Information technology is the use and application of the computer system to process, manage and distribute information. Use of IT in this context involves both the hardware and software components.

Some major advantages of Information Technology in various areas are listed below:

Speed and Accuracy in information Processing

With the use of IT more work can be done by individuals, businesses, services and government organisations. Function enhancement programs such as word processors, database programs and spreadsheets can get work done in less time with increased accuracy and efficiency.

Global Social Interaction

IT has made global social and cultural interaction very simple. This is evident with the emergence and success of social networking websites, such as Facebook and Twitter. More so, the use of information technology has eliminated language barriers with technologies such as language translators.

Entertainment

The introduction and use of high tech applications and gadgets such as iTunes, iPod and iPone has been revolutionary. Downloading, buying, playing and organising, music, videos, movies and TV shows has been made super easy and accessible. The gallant advancement of information technology through history puts the world in your palm with technologies such as iPad and Amazon Kindle.

Communication

The effect of information technology on universal communication is phenomenal. Telecommunication has gone beyond the use of basic technologies. With the advancement of the Internet and technologies such as VoIP (Voice over IP), organizations, businesses and individuals can communicate any time from different parts of the world through video and voice calls, web conferencing, seminars and virtual meetings.

Economic Advancement

A major step to global economic advancement is the removal of distance and time barriers brought about by the application of information technology to buying and selling of goods and services (e-commerce). E-commerce gave room for tiny, small and big business players to emerge. Interconnection of businesses is made painless. Thousands of local, national and international businesses and enterprises now have what is referred to as ‘web presence’ and can now reach wider audience.

Education

Education has gone far beyond the use of bricks and mortal classrooms or traditional blackboards. The world is now in the era of e-learning, using technologies such as VLEs (Virtual Learning Environments). Students can have access to all teaching materials and resources online; engage in virtual classrooms real time or asynchronously.

Health

The use of IT has led to an overall improvement in quality, safety and efficiency in the health care delivery system. The health care sector is positively impacted by the use of electronic health records, virtual healthcare team technologies, telemedicine, e-health grids and various specialist health care information systems.

Information technology had brought phenomenal changes to all aspect of life. The positive impact has been global and the change continues to grow exponentially. However, the disadvantages can not be ignored. A major menace brought about by IT is security and drastic reduction in privacy.

Impacts of Information Technology on Society in the New Century

In the past few decades there has been a revolution in computing and communications, and all indications are that technological progress and use of information technology will continue at a rapid pace. Accompanying and supporting the dramatic increases in the power and use of new information technologies has been the declining cost of communications as a result of both technological improvements and increased competition. According to Moore’s law the processing power of microchips is doubling every 18 months. These advances present many significant opportunities but also pose major challenges. Today, innovations in information technology are having wide-ranging effects across numerous domains of society, and policy makers are acting on issues involving economic productivity, intellectual property rights, privacy protection, and affordability of and access to information. Choices made now will have long lasting consequences, and attention must be paid to their social and economic impacts.

One of the most significant outcomes of the progress of information technology is probably electronic commerce over the Internet, a new way of conducting business. Though only a few years old, it may radically alter economic activities and the social environment. Already, it affects such large sectors as communications, finance and retail trade and might expand to areas such as education and health services. It implies the seamless application of information and communication technology along the entire value chain of a business that is conducted electronically.

The impacts of information technology and electronic commerce on business models, commerce, market structure, workplace, labour market, education, private life and society as a whole.

1. Business Models, Commerce and Market Structure

One important way in which information technology is affecting work is by reducing the importance of distance. In many industries, the geographic distribution of work is changing significantly. For instance, some software firms have found that they can overcome the tight local market for software engineers by sending projects to India or other nations where the wages are much lower. Furthermore, such arrangements can take advantage of the time differences so that critical projects can be worked on nearly around the clock. Firms can outsource their manufacturing to other nations and rely on telecommunications to keep marketing, R&D, and distribution teams in close contact with the manufacturing groups. Thus the technology can enable a finer division of labour among countries, which in turn affects the relative demand for various skills in each nation. The technology enables various types of work and employment to be decoupled from one another. Firms have greater freedom to locate their economic activities, creating greater competition among regions in infrastructure, labour, capital, and other resource markets. It also opens the door for regulatory arbitrage: firms can increasingly choose which tax authority and other regulations apply.

Computers and communication technologies also promote more market-like forms of production and distribution. An infrastructure of computing and communication technology, providing 24-hour access at low cost to almost any kind of price and product information desired by buyers, will reduce the informational barriers to efficient market operation. This infrastructure might also provide the means for effecting real-time transactions and make intermediaries such as sales clerks, stock brokers and travel agents, whose function is to provide an essential information link between buyers and sellers, redundant. Removal of intermediaries would reduce the costs in the production and distribution value chain. The information technologies have facilitated the evolution of enhanced mail order retailing, in which goods can be ordered quickly by using telephones or computer networks and then dispatched by suppliers through integrated transport companies that rely extensively on computers and communication technologies to control their operations. Nonphysical goods, such as software, can be shipped electronically, eliminating the entire transport channel. Payments can be done in new ways. The result is disintermediation throughout the distribution channel, with cost reduction, lower end-consumer prices, and higher profit margins.

The impact of information technology on the firms’ cost structure can be best illustrated on the electronic commerce example. The key areas of cost reduction when carrying out a sale via electronic commerce rather than in a traditional store involve physical establishment, order placement and execution, customer support, strong, inventory carrying, and distribution. Although setting up and maintaining an e-commerce web site might be expensive, it is certainly less expensive to maintain such a storefront than a physical one because it is always open, can be accessed by millions around the globe, and has few variable costs, so that it can scale up to meet the demand. By maintaining one ‘store’ instead of several, duplicate inventory costs are eliminated. In addition, e-commerce is very effective at reducing the costs of attracting new customers, because advertising is typically cheaper than for other media and more targeted. Moreover, the electronic interface allows e-commerce merchants to check that an order is internally consistent and that the order, receipt, and invoice match. Through e-commerce, firms are able to move much of their customer support on line so that customers can access databases or manuals directly. This significantly cuts costs while generally improving the quality of service. E-commerce shops require far fewer, but high-skilled, employees. E-commerce also permits savings in inventory carrying costs. The faster the input can be ordered and delivered, the less the need for a large inventory. The impact on costs associated with decreased inventories is most pronounced in industries where the product has a limited shelf life (e.g. bananas), is subject to fast technological obsolescence or price declines (e.g. computers), or where there is a rapid flow of new products (e.g. books, music). Although shipping costs can increase the cost of many products purchased via electronic commerce and add substantially to the final price, distribution costs are significantly reduced for digital products such as financial services, software, and travel, which are important e-commerce segments.

Although electronic commerce causes the disintermediation of some intermediaries, it creates greater dependency on others and also some entirely new intermediary functions. Among the intermediary services that could add costs to e-commerce transactions are advertising, secure online payment, and delivery. The relative ease of becoming an e-commerce merchant and setting up stores results in such a huge number of offerings that consumers can easily be overwhelmed. This increases the importance of using advertising to establish a brand name and thus generate consumer familiarity and trust. For new e-commerce start-ups, this process can be expensive and represents a significant transaction cost. The openness, global reach, and lack of physical clues that are inherent characteristics of e-commerce also make it vulnerable to fraud and thus increase certain costs for e-commerce merchants as compared to traditional stores. New techniques are being developed to protect the use of credit cards in e-commerce transactions, but the need for greater security and user verification leads to increased costs. A key feature of e-commerce is the convenience of having purchases delivered directly. In the case of tangibles, such as books, this incurs delivery costs, which cause prices to rise in most cases, thereby negating many of the savings associated with e-commerce and substantially adding to transaction costs.

With the Internet, e-commerce is rapidly expanding into a fast-moving, open global market with an ever-increasing number of participants. The open and global nature of e-commerce is likely to increase market size and change market structure, both in terms of the number and size of players and the way in which players compete on international markets. Digitized products can cross the border in real time, consumers can shop 24 hours a day, seven days a week, and firms are increasingly faced with international online competition. The Internet is helping to enlarge existing markets by cutting through many of the distribution and marketing barriers that can prevent firms from gaining access to foreign markets. E-commerce lowers information and transaction costs for operating on overseas markets and provides a cheap and efficient way to strengthen customer-supplier relations. It also encourages companies to develop innovative ways of advertising, delivering and supporting their product and services. While e-commerce on the Internet offers the potential for global markets, certain factors, such as language, transport costs, local reputation, as well as differences in the cost and ease of access to networks, attenuate this potential to a greater or lesser extent.

2. Workplace and Labour Market

Computers and communication technologies allow individuals to communicate with one another in ways complementary to traditional face-to-face, telephonic, and written modes. They enable collaborative work involving distributed communities of actors who seldom, if ever, meet physically. These technologies utilize communication infrastructures that are both global and always up, thus enabling 24-hour activity and asynchronous as well as synchronous interactions among individuals, groups, and organizations. Social interaction in organizations will be affected by use of computers and communication technologies. Peer-to-peer relations across department lines will be enhanced through sharing of information and coordination of activities. Interaction between superiors and subordinates will become more tense because of social control issues raised by the use of computerized monitoring systems, but on the other hand, the use of e-mail will lower the barriers to communications across different status levels, resulting in more uninhibited communications between supervisor and subordinates.

That the importance of distance will be reduced by computers and communication technology also favours telecommuting, and thus, has implications for the residence patterns of the citizens. As workers find that they can do most of their work at home rather than in a centralized workplace, the demand for homes in climatically and physically attractive regions would increase. The consequences of such a shift in employment from the suburbs to more remote areas would be profound. Property values would rise in the favoured destinations and fall in the suburbs. Rural, historical, or charming aspects of life and the environment in the newly attractive areas would be threatened. Since most telecommuters would be among the better educated and higher paid, the demand in these areas for high-income and high-status services like gourmet restaurants and clothing boutiques would increase. Also would there be an expansion of services of all types, creating and expanding job opportunities for the local population.

By reducing the fixed cost of employment, widespread telecommuting should make it easier for individuals to work on flexible schedules, to work part time, to share jobs, or to hold two or more jobs simultaneously. Since changing employers would not necessarily require changing one’s place of residence, telecommuting should increase job mobility and speed career advancement. This increased flexibility might also reduce job stress and increase job satisfaction. Since job stress is a major factor governing health there may be additional benefits in the form of reduced health costs and mortality rates. On the other hand one might also argue that technologies, by expanding the number of different tasks that are expected of workers and the array of skills needed to perform these tasks, might speed up work and increase the level of stress and time pressure on workers.

A question that is more difficult to be answered is about the impacts that computers and communications might have on employment. The ability of computers and communications to perform routine tasks such as bookkeeping more rapidly than humans leads to concern that people will be replaced by computers and communications. The response to this argument is that even if computers and communications lead to the elimination of some workers, other jobs will be created, particularly for computer professionals, and that growth in output will increase overall employment. It is more likely that computers and communications will lead to changes in the types of workers needed for different occupations rather than to changes in total employment.

A number of industries are affected by electronic commerce. The distribution sector is directly affected, as e-commerce is a way of supplying and delivering goods and services. Other industries, indirectly affected, are those related to information and communication technology (the infrastructure that enables e-commerce), content-related industries (entertainment, software), transactions-related industries (financial sector, advertising, travel, transport). eCommerce might also create new markets or extend market reach beyond traditional borders. Enlarging the market will have a positive effect on jobs. Another important issue relates to inter linkages among activities affected by e-commerce. Expenditure for e-commerce-related intermediate goods and services will create jobs indirectly, on the basis of the volume of electronic transactions and their effect on prices, costs and productivity. The convergence of media, telecommunication and computing technologies is creating a new integrated supply chain for the production and delivery of multimedia and information content. Most of the employment related to e-commerce around the content industries and communication infrastructure such as the Internet.

Jobs are both created and destroyed by technology, trade, and organizational change. These processes also underlie changes in the skill composition of employment. Beyond the net employment gains or losses brought about by these factors, it is apparent that workers with different skill levels will be affected differently. E-commerce is certainly driving the demand for IT professionals but it also requires IT expertise to be coupled with strong business application skills, thereby generating demand for a flexible, multi-skilled work force. There is a growing need for increased integration of Internet front-end applications with enterprise operations, applications and back-end databases. Many of the IT skill requirements needed for Internet support can be met by low-paid IT workers who can deal with the organizational services needed for basic web page programming. However, wide area networks, competitive web sites, and complex network applications require much more skill than a platform-specific IT job. Since the skills required for e-commerce are rare and in high demand, e-commerce might accelerate the up skilling trend in many countries by requiring high-skilled computer scientists to replace low-skilled information clerks, cashiers and market salespersons.

3. Education

Advances in information technology will affect the craft of teaching by complementing rather than eliminating traditional classroom instruction. Indeed the effective instructor acts in a mixture of roles. In one role the instructor is a supplier of services to the students, who might be regarded as its customers. But the effective instructor occupies another role as well, as a supervisor of students, and plays a role in motivating, encouraging, evaluating, and developing students. For any topic there will always be a small percentage of students with the necessary background, motivation, and self-discipline to learn from self-paced workbooks or computer assisted instruction. For the majority of students, however, the presence of a live instructor will continue to be far more effective than a computer assisted counterpart in facilitating positive educational outcomes. The greatest potential for new information technology lies in improving the productivity of time spent outside the classroom. Making solutions to problem sets and assigned reading materials available on the Internet offers a lot of convenience. E-mail vastly simplifies communication between students and faculty and among students who may be engaged in group projects. Advances in information technology will affect the craft of teaching by complementing rather than eliminating traditional classroom instruction. Indeed the effective instructor acts in a mixture of roles. In one role the instructor is a supplier of services to the students, who might be regarded as its customers. But the effective instructor occupies another role as well, as a supervisor of students, and plays a role in motivating, encouraging, evaluating, and developing students. For any topic there will always be a small percentage of students with the necessary background, motivation, and self-discipline to learn from self-paced workbooks or computer assisted instruction. For the majority of students, however, the presence of a live instructor will continue to be far more effective than a computer assisted counterpart in facilitating positive educational outcomes. The greatest potential for new information technology lies in improving the productivity of time spent outside the classroom. Making solutions to problem sets and assigned reading materials available on the Internet offers a lot of convenience. E-mail vastly simplifies communication between students and faculty and among students who may be engaged in group projects.

Although distance learning has existed for some time, the Internet makes possible a large expansion in coverage and better delivery of instruction. Text can be combined with audio/ video, and students can interact in real time via e-mail and discussion groups. Such technical improvements coincide with a general demand for retraining by those who, due to work and family demands, cannot attend traditional courses. Distance learning via the Internet is likely to complement existing schools for children and university students, but it could have more of a substitution effect for continuing education programmes. For some degree programmes, high-prestige institutions could use their reputation to attract students who would otherwise attend a local facility. Owing to the Internet’s ease of access and convenience for distance learning, overall demand for such programmes will probably expand, leading to growth in this segment of e-commerce.

As shown in the previous section, high level skills are vital in a technology-based and knowledge intensive economy. Changes associated with rapid technological advances in industry have made continual upgrading of professional skills an economic necessity. The goal of lifelong learning can only be accomplished by reinforcing and adapting existing systems of learning, both in public and private sectors. The demand for education and training concerns the full range of modern technology. Information technologies are uniquely capable of providing ways to meet this demand. Online training via the Internet ranges from accessing self-study courses to complete electronic classrooms. These computer-based training programmes provide flexibility in skills acquisition and are more affordable and relevant than more traditional seminars and courses.

4. Private Life and Society

Increasing representation of a wide variety of content in digital form results in easier and cheaper duplication and distribution of information. This has a mixed effect on the provision of content. On the one hand, content can be distributed at a lower unit cost. On the other hand, distribution of content outside of channels that respect intellectual property rights can reduce the incentives of creators and distributors to produce and make content available in the first place. Information technology raises a host of questions about intellectual property protection and new tools and regulations have to be developed in order to solve this problem.

Many issues also surround free speech and regulation of content on the Internet, and there continue to be calls for mechanisms to control objectionable content. However it is very difficult to find a sensible solution. Dealing with indecent material involves understanding not only the views on such topics but also their evolution over time. Furthermore, the same technology that allows for content altering with respect to decency can be used to filter political speech and to restrict access to political material. Thus, if censorship does not appear to be an option, a possible solution might be labelling. The idea is that consumers will be better informed in their decisions to avoid objectionable content.

The rapid increase in computing and communications power has raised considerable concern about privacy both in the public and private sector. Decreases in the cost of data storage and information processing make it likely that it will become practicable for both government and private data-mining enterprises to collect detailed dossiers on all citizens. Nobody knows who currently collects data about individuals, how this data is used and shared or how this data might be misused. These concerns lower the consumers’ trust in online institutions and communication and, thus, inhibit the development of electronic commerce. A technological approach to protecting privacy might by cryptography although it might be claimed that cryptography presents a serious barrier to criminal investigations.

It is popular wisdom that people today suffer information overload. A lot of the information available on the Internet is incomplete and even incorrect. People spend more and more of their time absorbing irrelevant information just because it is available and they think they should know about it. Therefore, it must be studied how people assign credibility to the information they collect in order to invent and develop new credibility systems to help consumers to manage the information overload.

Technological progress inevitably creates dependence on technology. Indeed the creation of vital infrastructure ensures dependence on that infrastructure. As surely as the world is now dependent on its transport, telephone, and other infrastructures, it will be dependent on the emerging information infrastructure. Dependence on technology can bring risks. Failures in the technological infrastructure can cause the collapse of economic and social functionality. Blackouts of long-distance telephone service, credit data systems, and electronic funds transfer systems, and other such vital communications and information processing services would undoubtedly cause widespread economic disruption. However, it is probably impossible to avoid technological dependence. Therefore, what must be considered is the exposure brought from dependence on technologies with a recognizable probability of failure, no workable substitute at hand, and high costs as a result of failure.

The ongoing computing and communications revolution has numerous economic and social impacts on modern society and requires serious social science investigation in order to manage its risks and dangers. Such work would be valuable for both social policy and technology design. Decisions have to be taken carefully. Many choices being made now will be costly or difficult to modify in the future.